JeVoisBase  1.21
JeVois Smart Embedded Machine Vision Toolkit Base Modules
Share this page:
Loading...
Searching...
No Matches
DetectionDNN.C
Go to the documentation of this file.
1// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2//
3// JeVois Smart Embedded Machine Vision Toolkit - Copyright (C) 2016 by Laurent Itti, the University of Southern
4// California (USC), and iLab at USC. See http://iLab.usc.edu and http://jevois.org for information about this project.
5//
6// This file is part of the JeVois Smart Embedded Machine Vision Toolkit. This program is free software; you can
7// redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
8// Foundation, version 2. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
10// License for more details. You should have received a copy of the GNU General Public License along with this program;
11// if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
12//
13// Contact information: Laurent Itti - 3641 Watt Way, HNB-07A - Los Angeles, CA 90089-2520 - USA.
14// Tel: +1 213 740 3527 - itti@pollux.usc.edu - http://iLab.usc.edu - http://jevois.org
15// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
16/*! \file */
17
18#include <jevois/Core/Module.H>
19#include <jevois/Debug/Timer.H>
21#include <opencv2/core/core.hpp>
22#include <opencv2/dnn.hpp>
23#include <opencv2/imgproc.hpp>
24#include <fstream>
25
26// icon from opencv
27
28static jevois::ParameterCategory const ParamCateg("Detection DNN Options");
29
30//! Enum \relates DetectionDNN
31JEVOIS_DEFINE_ENUM_CLASS(Model, (Custom) (Face) (MobileNetSSDvoc) (MobileNetSSDcoco) (MobileNet2SSDcoco)
32 (TinyYOLOv3) (TinyYOLOv2) );
33
34//! Parameter \relates DetectionDNN
35JEVOIS_DECLARE_PARAMETER_WITH_CALLBACK(model, Model, "Shortcut parameter to load a model. This sets parameters "
36 "classnames, configname, modelname, etc for the selected network. When "
37 "the selected model is Custom, those other parameters will be set instead "
38 "from the module's params.cfg config file.",
39 Model::Custom, Model_Values, ParamCateg);
40
41//! Parameter \relates DetectionDNN
42JEVOIS_DECLARE_PARAMETER(classnames, std::string, "Path to a text file with names of classes to label detected objects",
43 JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.classes", ParamCateg);
44
45//! Parameter \relates DetectionDNN
46JEVOIS_DECLARE_PARAMETER(configname, std::string, "Path to a text file that contains network configuration. "
47 "Can have extension .prototxt (Caffe), .pbtxt (TensorFlow), or .cfg (Darknet).",
48 JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.prototxt", ParamCateg);
49
50//! Parameter \relates DetectionDNN
51JEVOIS_DECLARE_PARAMETER(modelname, std::string, "Path to a binary file of model contains trained weights. "
52 "Can have extension .caffemodel (Caffe), .pb (TensorFlow), .t7 or .net (Torch), "
53 "or .weights (Darknet).",
54 JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.caffemodel", ParamCateg);
55
56//! Parameter \relates DetectionDNN
57JEVOIS_DECLARE_PARAMETER(netin, cv::Size, "Width and height (in pixels) of the neural network input layer, or [0 0] "
58 "to make it match camera frame size. NOTE: for YOLO v3 sizes must be multiples of 32.",
59 cv::Size(160, 120), ParamCateg);
60
61//! Parameter \relates DetectionDNN
62JEVOIS_DECLARE_PARAMETER(thresh, float, "Detection threshold in percent confidence",
63 50.0F, jevois::Range<float>(0.0F, 100.0F), ParamCateg);
64
65//! Parameter \relates DetectionDNN
66JEVOIS_DECLARE_PARAMETER(nms, float, "Non-maximum suppression intersection-over-union threshold in percent",
67 45.0F, jevois::Range<float>(0.0F, 100.0F), ParamCateg);
68
69//! Parameter \relates DetectionDNN
70JEVOIS_DECLARE_PARAMETER(rgb, bool, "When true, model works with RGB input images instead BGR ones",
71 true, ParamCateg);
72
73//! Parameter \relates DetectionDNN
74JEVOIS_DECLARE_PARAMETER(scale, float, "Value scaling factor applied to input pixels",
75 2.0F / 255.0F, ParamCateg);
76
77//! Parameter \relates DetectionDNN
78JEVOIS_DECLARE_PARAMETER(mean, cv::Scalar, "Mean BGR value subtracted from input image",
79 cv::Scalar(127.5F, 127.5F, 127.5F), ParamCateg);
80
81#ifdef JEVOIS_PRO
82//! Enum \relates DetectionDNN
83JEVOIS_DEFINE_ENUM_CLASS(Target, (CPU) (OpenCL) (OpenCL_FP16) );
84
85//! Parameter \relates DetectionDNN
86JEVOIS_DECLARE_PARAMETER(target, Target, "OpenCV compute target to use. Changes will take effect "
87 "next time you load a different model.",
88 Target::OpenCL, Target_Values, ParamCateg);
89#endif
90
91//! Detect and recognize multiple objects in scenes using OpenCV Deep Neural Nets (DNN)
92/*! This module runs an object detection deep neural network using the OpenCV DNN library. Detection networks analyze a
93 whole scene and produce a number of bounding boxes around detected objects, together with identity labels and
94 confidence scores for each detected box.
95
96 This module runs the selected deep neural network and shows all detections obtained.
97
98 Note that by default this module runs the OpenCV Face Detector DNN which can detect human faces.
99
100 Included with the standard JeVois distribution are the following networks:
101
102 - OpenCV Face Detector, Caffe model
103 - MobileNet + SSD trained on Pascal VOC (20 object classes), Caffe model
104 - MobileNet + SSD trained on Coco (80 object classes), TensorFlow model
105 - MobileNet v2 + SSD trained on Coco (80 object classes), TensorFlow model
106 - Darknet Tiny YOLO v3 trained on Coco (80 object classes), Darknet model
107 - Darknet Tiny YOLO v2 trained on Pascal VOC (20 object classes), Darknet model
108
109 See the module's \b params.cfg file to switch network. Object categories are as follows:
110
111 - The 80 COCO object categories are: person, bicycle, car, motorbike, aeroplane, bus, train, truck, boat, traffic,
112 fire, stop, parking, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella,
113 handbag, tie, suitcase, frisbee, skis, snowboard, sports, kite, baseball, baseball, skateboard, surfboard, tennis,
114 bottle, wine, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot, pizza, donut,
115 cake, chair, sofa, pottedplant, bed, diningtable, toilet, tvmonitor, laptop, mouse, remote, keyboard, cell,
116 microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy, hair, toothbrush.
117
118 - The 20 Pascal-VOC object categories are: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,
119 diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor.
120
121 Sometimes it will make mistakes! The performance of yolov3-tiny is about 33.1% correct (mean average precision) on
122 the COCO test set. The OpenCV Face Detector is quite fast and robust!
123
124 Speed and network size
125 ----------------------
126
127 The parameter \p netin allows you to rescale the neural network to the specified size. Beware that this will only
128 work if the network used is fully convolutional (as is the case with the default networks listed above). This not
129 only allows you to adjust processing speed (and, conversely, accuracy), but also to better match the network to the
130 input images (e.g., the default size for tiny-yolo is 416x416, and, thus, passing it a input image of size 640x480
131 will result in first scaling that input to 416x312, then letterboxing it by adding gray borders on top and bottom so
132 that the final input to the network is 416x416). This letterboxing can be completely avoided by just resizing the
133 network to 320x240.
134
135 Here are expected processing speeds for the OpenCV Face Detector:
136 - when netin = [320 240], processes 320x240 inputs, about 650ms/image (1.5 frames/s)
137 - when netin = [160 120], processes 160x120 inputs, about 190ms/image (5.0 frames/s)
138
139 Serial messages
140 ---------------
141
142 When detections are found which are above threshold, one message will be sent for each detected
143 object (i.e., for each box that gets drawn when USB outputs are used), using a standardized 2D message:
144 + Serial message type: \b 2D
145 + `id`: the category of the recognized object, followed by ':' and the confidence score in percent
146 + `x`, `y`, or vertices: standardized 2D coordinates of object center or corners
147 + `w`, `h`: standardized object size
148 + `extra`: any number of additional category:score pairs which had an above-threshold score for that box
149
150 See \ref UserSerialStyle for more on standardized serial messages, and \ref coordhelpers for more info on
151 standardized coordinates.
152
153 This code is heavily inspired from:
154 https://github.com/opencv/opencv/blob/master/samples/dnn/object_detection.cpp
155
156 @author Laurent Itti
157
158 @displayname Detection DNN
159 @videomapping NONE 0 0 0.0 YUYV 640 480 15.0 JeVois DetectionDNN
160 @videomapping YUYV 640 498 15.0 YUYV 640 480 15.0 JeVois DetectionDNN
161 @email itti\@usc.edu
162 @address University of Southern California, HNB-07A, 3641 Watt Way, Los Angeles, CA 90089-2520, USA
163 @copyright Copyright (C) 2018 by Laurent Itti, iLab and the University of Southern California
164 @mainurl http://jevois.org
165 @supporturl http://jevois.org/doc
166 @otherurl http://iLab.usc.edu
167 @license GPL v3
168 @distribution Unrestricted
169 @restrictions None
170 \ingroup modules */
172 public jevois::Parameter<model, classnames, configname, modelname, netin,
173 thresh, nms, rgb, scale, mean
174#ifdef JEVOIS_PRO
175 , target
176#endif
177 >
178{
179 public:
180 // ####################################################################################################
181 //! Constructor
182 // ####################################################################################################
183 DetectionDNN(std::string const & instance) : jevois::StdModule(instance)
184 { }
185
186 // ####################################################################################################
187 //! Virtual destructor for safe inheritance
188 // ####################################################################################################
190 { }
191
192 // ####################################################################################################
193 //! Parameter callback: set the selected model
194 // ####################################################################################################
195 void onParamChange(model const & /*param*/, Model const & val) override
196 {
197 // Un-freeze the dependent parameters:
198 classnames::freeze(false);
199 configname::freeze(false);
200 modelname::freeze(false);
201
202 // Reset the other parameters:
203 netin::reset();
204 thresh::reset();
205 rgb::reset();
206 scale::reset();
207 nms::reset();
208 mean::reset();
209
210 // Now set the parameters for the chosen model:
211 switch (val)
212 {
213 case Model::Custom:
214 break;
215
216 case Model::Face:
217 classnames::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.classes");
218 modelname::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.caffemodel");
219 configname::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.prototxt");
220 scale::set(1.0F);
221 mean::set(cv::Scalar(104.0F, 177.0F, 123.0F));
222 rgb::set(false);
223 break;
224
225 case Model::MobileNetSSDvoc:
226 classnames::set(JEVOIS_SHARE_PATH "/darknet/yolo/data/voc.names");
227 modelname::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/MobileNetSSD_deploy.caffemodel");
228 configname::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/MobileNetSSD_deploy.prototxt");
229 break;
230
231 case Model::MobileNetSSDcoco:
232 classnames::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/coco_tf.names");
233 modelname::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/ssd_mobilenet_v1_coco_2017_11_17.pb");
234 configname::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/ssd_mobilenet_v1_coco_2017_11_17.pbtxt");
235 nms::set(10.0F);
236 break;
237
238 case Model::MobileNet2SSDcoco:
239 classnames::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/coco_tf.names");
240 modelname::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/ssd_mobilenet_v2_coco_2018_03_29.pb");
241 configname::set(JEVOIS_SHARE_PATH "/opencv-dnn/detection/ssd_mobilenet_v2_coco_2018_03_29.pbtxt");
242 break;
243
244 case Model::TinyYOLOv3:
245 classnames::set(JEVOIS_SHARE_PATH "/darknet/yolo/data/coco.names");
246 modelname::set(JEVOIS_SHARE_PATH "/darknet/yolo/weights/yolov3-tiny.weights");
247 configname::set(JEVOIS_SHARE_PATH "/darknet/yolo/cfg/yolov3-tiny.cfg");
248 break;
249
250 case Model::TinyYOLOv2:
251 classnames::set(JEVOIS_SHARE_PATH "/darknet/yolo/data/voc.names");
252 modelname::set(JEVOIS_SHARE_PATH "/darknet/yolo/weights/yolov2-tiny-voc.weights");
253 configname::set(JEVOIS_SHARE_PATH "/darknet/yolo/cfg/yolov2-tiny-voc.cfg");
254 netin::set(cv::Size(320, 240));
255 }
256
257 // Freeze the dependent parameters unless we are in custom mode:
258 if (val != Model::Custom)
259 {
260 classnames::freeze(true);
261 configname::freeze(true);
262 modelname::freeze(true);
263 }
264
265 // Load/re-load the model:
266 load();
267 }
268
269 // ####################################################################################################
270 //! Load and initialize a model
271 // ####################################################################################################
272 void load()
273 {
274 // Need to nuke the network first if it exists or we could run out of RAM:
275 if (itsNet.empty() == false) itsNet = cv::dnn::Net();
276
277 // Load the class names:
278 itsClasses.clear();
279 std::ifstream ifs(classnames::get());
280 if (ifs.is_open() == false) LFATAL("Class names file " << classnames::get() << " not found");
281 std::string line;
282 while (std::getline(ifs, line)) itsClasses.push_back(line);
283
284 // Create and load the network:
285 itsNet = cv::dnn::readNet(modelname::get(), configname::get());
286 itsNet.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
287#ifdef JEVOIS_PRO
288 switch(target::get())
289 {
290 case Target::CPU: itsNet.setPreferableTarget(cv::dnn::DNN_TARGET_CPU); break;
291 case Target::OpenCL: itsNet.setPreferableTarget(cv::dnn::DNN_TARGET_OPENCL); break;
292 case Target::OpenCL_FP16: itsNet.setPreferableTarget(cv::dnn::DNN_TARGET_OPENCL_FP16); break;
293 }
294#else
295 itsNet.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
296#endif
297 // Get names of the network's output layers:
298 itsOutLayers = itsNet.getUnconnectedOutLayers();
299 std::vector<cv::String> layersNames = itsNet.getLayerNames();
300 itsOutNames.resize(itsOutLayers.size());
301 for (size_t i = 0; i < itsOutLayers.size(); ++i) itsOutNames[i] = layersNames[itsOutLayers[i] - 1];
302 itsOutLayerType = itsNet.getLayer(itsOutLayers[0])->type;
303 }
304
305 // ####################################################################################################
306 //! Post-processing to extract boxes from network outputs
307 // ####################################################################################################
308 void postprocess(cv::Mat const & frame, std::vector<cv::Mat> const & outs, jevois::RawImage * outframe = nullptr)
309 {
310 float const confThreshold = thresh::get() * 0.01F;
311 float const nmsThreshold = nms::get() * 0.01F;
312
313 std::vector<int> classIds;
314 std::vector<float> confidences;
315 std::vector<cv::Rect> boxes;
316 if (itsNet.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
317 {
318 // Network produces output blob with a shape 1x1xNx7 where N is a number of detections and an every detection is
319 // a vector of values [batchId, classId, confidence, left, top, right, bottom]
320 if (outs.size() != 1) LFATAL("Malformed output layers");
321 float* data = (float*)outs[0].data;
322 for (size_t i = 0; i < outs[0].total(); i += 7)
323 {
324 float confidence = data[i + 2];
325 if (confidence > confThreshold)
326 {
327 int left = (int)data[i + 3];
328 int top = (int)data[i + 4];
329 int right = (int)data[i + 5];
330 int bottom = (int)data[i + 6];
331 int width = right - left + 1;
332 int height = bottom - top + 1;
333 classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id.
334 boxes.push_back(cv::Rect(left, top, width, height));
335 confidences.push_back(confidence);
336 }
337 }
338 }
339 else if (itsOutLayerType == "DetectionOutput")
340 {
341 // Network produces output blob with a shape 1x1xNx7 where N is a number of detections and an every detection is
342 // a vector of values [batchId, classId, confidence, left, top, right, bottom]
343 if (outs.size() != 1) LFATAL("Malformed output layers");
344 float* data = (float*)outs[0].data;
345 for (size_t i = 0; i < outs[0].total(); i += 7)
346 {
347 float confidence = data[i + 2];
348 if (confidence > confThreshold)
349 {
350 int left = (int)(data[i + 3] * frame.cols);
351 int top = (int)(data[i + 4] * frame.rows);
352 int right = (int)(data[i + 5] * frame.cols);
353 int bottom = (int)(data[i + 6] * frame.rows);
354 int width = right - left + 1;
355 int height = bottom - top + 1;
356 classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id.
357 boxes.push_back(cv::Rect(left, top, width, height));
358 confidences.push_back(confidence);
359 }
360 }
361 }
362 else if (itsOutLayerType == "Region")
363 {
364 for (size_t i = 0; i < outs.size(); ++i)
365 {
366 // Network produces output blob with a shape NxC where N is a number of detected objects and C is a number of
367 // classes + 4 where the first 4 numbers are [center_x, center_y, width, height]
368 float* data = (float*)outs[i].data;
369 for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
370 {
371 cv::Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
372 cv::Point classIdPoint;
373 double confidence;
374 minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
375 if (confidence > confThreshold)
376 {
377 int centerX = (int)(data[0] * frame.cols);
378 int centerY = (int)(data[1] * frame.rows);
379 int width = (int)(data[2] * frame.cols);
380 int height = (int)(data[3] * frame.rows);
381 int left = centerX - width / 2;
382 int top = centerY - height / 2;
383
384 classIds.push_back(classIdPoint.x);
385 confidences.push_back((float)confidence);
386 boxes.push_back(cv::Rect(left, top, width, height));
387 }
388 }
389 }
390 }
391 else LFATAL("Unknown output layer type: " << itsOutLayerType);
392
393 // Cleanup overlapping boxes:
394 std::vector<int> indices;
395 cv::dnn::NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
396
397 // Send serial messages and draw boxes:
398 for (size_t i = 0; i < indices.size(); ++i)
399 {
400 int idx = indices[i];
401 cv::Rect const & box = boxes[idx];
402 std::vector<jevois::ObjReco> data;
403 float const conf = confidences[idx] * 100.0F;
404 std::string name;
405 if (classIds[idx] < int(itsClasses.size())) name = itsClasses[classIds[idx]]; else name = "Oooops";
406 data.push_back({ conf, name });
407
408 std::string label = jevois::sformat("%s: %.2f", name.c_str(), conf);
409
410 if (outframe)
411 {
412 jevois::rawimage::drawRect(*outframe, box.x, box.y, box.width, box.height, 2, jevois::yuyv::LightGreen);
413 jevois::rawimage::writeText(*outframe, label, box.x + 6, box.y + 2, jevois::yuyv::LightGreen,
415 }
416
417 sendSerialObjDetImg2D(frame.cols, frame.rows, box.x, box.y, box.width, box.height, data);
418 }
419 }
420
421 // ####################################################################################################
422 //! Processing function, no video output
423 // ####################################################################################################
424 virtual void process(jevois::InputFrame && inframe) override
425 {
426 // Wait for next available camera image:
427 jevois::RawImage const inimg = inframe.get();
428
429 // Convert input image to BGR for predictions:
430 cv::Mat cvimg = jevois::rawimage::convertToCvBGR(inimg);
431
432 // Let camera know we are done processing the input image:
433 inframe.done();
434
435 // Extract blob that will be sent to network:
436 cv::Mat blob;
437 cv::dnn::blobFromImage(cvimg, blob, scale::get(), netin::get(), mean::get(), rgb::get(), false);
438
439 // Launch the predictions:
440 itsNet.setInput(blob);
441 std::vector<cv::Mat> outs; itsNet.forward(outs, itsOutNames);
442
443 // Post-process the outputs and send serial messages:
444 postprocess(cvimg, outs);
445 }
446
447 // ####################################################################################################
448 //! Processing function with video output to USB
449 // ####################################################################################################
450 virtual void process(jevois::InputFrame && inframe, jevois::OutputFrame && outframe) override
451 {
452 static jevois::Timer timer("processing", 10, LOG_DEBUG);
453
454 // Wait for next available camera image:
455 jevois::RawImage const inimg = inframe.get();
456
457 timer.start();
458
459 // We only handle one specific pixel format, and any image size in this module:
460 unsigned int const w = inimg.width, h = inimg.height;
461 inimg.require("input", w, h, V4L2_PIX_FMT_YUYV);
462
463 // While we process it, start a thread to wait for out frame and paste the input into it:
464 jevois::RawImage outimg;
465 auto paste_fut = jevois::async([&]() {
466 outimg = outframe.get();
467 outimg.require("output", w, h + 18, inimg.fmt);
468
469 // Paste the current input image:
470 jevois::rawimage::paste(inimg, outimg, 0, 0);
471 jevois::rawimage::writeText(outimg, "JeVois ObjectDetection DNN", 3, 3, jevois::yuyv::White);
473 });
474
475 // Convert input image to BGR for predictions:
476 cv::Mat cvimg = jevois::rawimage::convertToCvBGR(inimg);
477
478 // Extract blob that will be sent to network:
479 cv::Mat blob;
480 cv::dnn::blobFromImage(cvimg, blob, scale::get(), netin::get(), mean::get(), rgb::get(), false);
481
482 // Let camera know we are done processing the input image:
483 inframe.done();
484
485 // Launch the predictions:
486 itsNet.setInput(blob);
487 std::vector<cv::Mat> outs; itsNet.forward(outs, itsOutNames);
488
489 // Wait for paste to finish up:
490 paste_fut.get();
491
492 // Post-process the outputs, draw them, and send serial messages:
493 postprocess(cvimg, outs, &outimg);
494
495 // Display efficiency information:
496 std::vector<double> layersTimes;
497 double freq = cv::getTickFrequency() / 1000;
498 double t = itsNet.getPerfProfile(layersTimes) / freq;
499 std::string label = model::strget() + jevois::sformat(" inference time: %.2f ms", t);
500 jevois::rawimage::writeText(outimg, label, 3, h + 3, jevois::yuyv::White);
501
502 // Show processing fps:
503 std::string const & fpscpu = timer.stop();
504 jevois::rawimage::writeText(outimg, fpscpu, 3, h - 13, jevois::yuyv::White);
505
506 // Send the output image with our processing results to the host over USB:
507 outframe.send();
508 }
509
510 // ####################################################################################################
511 protected:
512 std::vector<std::string> itsClasses;
513 cv::dnn::Net itsNet;
514 std::vector<cv::String> itsOutNames;
515 std::vector<int> itsOutLayers;
516 std::string itsOutLayerType;
517};
518
519// Allow the module to be loaded as a shared object (.so) file:
JEVOIS_REGISTER_MODULE(ArUcoBlob)
#define JEVOIS_SHARE_PATH
int h
Detect and recognize multiple objects in scenes using OpenCV Deep Neural Nets (DNN)
JEVOIS_DECLARE_PARAMETER(mean, cv::Scalar, "Mean BGR value subtracted from input image", cv::Scalar(127.5F, 127.5F, 127.5F), ParamCateg)
Parameter.
JEVOIS_DECLARE_PARAMETER(rgb, bool, "When true, model works with RGB input images instead BGR ones", true, ParamCateg)
Parameter.
JEVOIS_DECLARE_PARAMETER(scale, float, "Value scaling factor applied to input pixels", 2.0F/255.0F, ParamCateg)
Parameter.
void postprocess(cv::Mat const &frame, std::vector< cv::Mat > const &outs, jevois::RawImage *outframe=nullptr)
Post-processing to extract boxes from network outputs.
cv::dnn::Net itsNet
std::vector< int > itsOutLayers
virtual ~DetectionDNN()
Virtual destructor for safe inheritance.
virtual void process(jevois::InputFrame &&inframe) override
Processing function, no video output.
void onParamChange(model const &, Model const &val) override
Parameter callback: set the selected model.
JEVOIS_DECLARE_PARAMETER(thresh, float, "Detection threshold in percent confidence", 50.0F, jevois::Range< float >(0.0F, 100.0F), ParamCateg)
Parameter.
JEVOIS_DEFINE_ENUM_CLASS(Model,(Custom)(Face)(MobileNetSSDvoc)(MobileNetSSDcoco)(MobileNet2SSDcoco)(TinyYOLOv3)(TinyYOLOv2))
Enum.
DetectionDNN(std::string const &instance)
Constructor.
JEVOIS_DEFINE_ENUM_CLASS(Target,(CPU)(OpenCL)(OpenCL_FP16))
Enum.
JEVOIS_DECLARE_PARAMETER(target, Target, "OpenCV compute target to use. Changes will take effect " "next time you load a different model.", Target::OpenCL, Target_Values, ParamCateg)
Parameter.
JEVOIS_DECLARE_PARAMETER(configname, std::string, "Path to a text file that contains network configuration. " "Can have extension .prototxt (Caffe), .pbtxt (TensorFlow), or .cfg (Darknet).", JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.prototxt", ParamCateg)
Parameter.
std::vector< cv::String > itsOutNames
JEVOIS_DECLARE_PARAMETER(modelname, std::string, "Path to a binary file of model contains trained weights. " "Can have extension .caffemodel (Caffe), .pb (TensorFlow), .t7 or .net (Torch), " "or .weights (Darknet).", JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.caffemodel", ParamCateg)
Parameter.
std::vector< std::string > itsClasses
JEVOIS_DECLARE_PARAMETER(nms, float, "Non-maximum suppression intersection-over-union threshold in percent", 45.0F, jevois::Range< float >(0.0F, 100.0F), ParamCateg)
Parameter.
JEVOIS_DECLARE_PARAMETER(classnames, std::string, "Path to a text file with names of classes to label detected objects", JEVOIS_SHARE_PATH "/opencv-dnn/detection/opencv_face_detector.classes", ParamCateg)
Parameter.
JEVOIS_DECLARE_PARAMETER_WITH_CALLBACK(model, Model, "Shortcut parameter to load a model. This sets parameters " "classnames, configname, modelname, etc for the selected network. When " "the selected model is Custom, those other parameters will be set instead " "from the module's params.cfg config file.", Model::Custom, Model_Values, ParamCateg)
Parameter.
void load()
Load and initialize a model.
std::string itsOutLayerType
JEVOIS_DECLARE_PARAMETER(netin, cv::Size, "Width and height (in pixels) of the neural network input layer, or [0 0] " "to make it match camera frame size. NOTE: for YOLO v3 sizes must be multiples of 32.", cv::Size(160, 120), ParamCateg)
Parameter.
virtual void process(jevois::InputFrame &&inframe, jevois::OutputFrame &&outframe) override
Processing function with video output to USB.
unsigned int fmt
unsigned int width
unsigned int height
void require(char const *info, unsigned int w, unsigned int h, unsigned int f) const
void sendSerialObjDetImg2D(unsigned int camw, unsigned int camh, float x, float y, float w, float h, std::vector< ObjReco > const &res)
StdModule(std::string const &instance)
std::string const & stop(double *seconds)
#define LFATAL(msg)
void paste(RawImage const &src, RawImage &dest, int dx, int dy)
void writeText(RawImage &img, std::string const &txt, int x, int y, unsigned int col, Font font=Font6x10)
void drawFilledRect(RawImage &img, int x, int y, unsigned int w, unsigned int h, unsigned int col)
cv::Mat convertToCvBGR(RawImage const &src)
void drawRect(RawImage &img, int x, int y, unsigned int w, unsigned int h, unsigned int thick, unsigned int col)
std::future< std::invoke_result_t< std::decay_t< Function >, std::decay_t< Args >... > > async(Function &&f, Args &&... args)
std::string sformat(char const *fmt,...) __attribute__((format(__printf__
unsigned short constexpr Black
unsigned short constexpr White
unsigned short constexpr LightGreen