7    def __init__(self, modelPath, inputSize=[320, 240], confThreshold=0.8, nmsThreshold=0.3, topK=5000, keepTopK=750, backendId=0, targetId=0):
 
   18        self.
min_sizes = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]]
 
 
   83        feature_map_2th = [int(int((h + 1) / 2) / 2),
 
   84                           int(int((w + 1) / 2) / 2)]
 
   85        feature_map_3th = [int(feature_map_2th[0] / 2),
 
   86                           int(feature_map_2th[1] / 2)]
 
   87        feature_map_4th = [int(feature_map_3th[0] / 2),
 
   88                           int(feature_map_3th[1] / 2)]
 
   89        feature_map_5th = [int(feature_map_4th[0] / 2),
 
   90                           int(feature_map_4th[1] / 2)]
 
   91        feature_map_6th = [int(feature_map_5th[0] / 2),
 
   92                           int(feature_map_5th[1] / 2)]
 
   94        feature_maps = [feature_map_3th, feature_map_4th,
 
   95                        feature_map_5th, feature_map_6th]
 
   98        for k, f 
in enumerate(feature_maps):
 
  100            for i, j 
in product(range(f[0]), range(f[1])): 
 
  101                for min_size 
in min_sizes:
 
  105                    cx = (j + 0.5) * self.
steps[k] / w
 
  106                    cy = (i + 0.5) * self.
steps[k] / h
 
  108                    priors.append([cx, cy, s_kx, s_ky])
 
  109        self.
priors = np.array(priors, dtype=np.float32)
 
 
  112        loc, conf, iou = blob
 
  114        cls_scores = conf[:, 1]
 
  115        iou_scores = iou[:, 0]
 
  117        _idx = np.where(iou_scores < 0.)
 
  118        iou_scores[_idx] = 0.
 
  119        _idx = np.where(iou_scores > 1.)
 
  120        iou_scores[_idx] = 1.
 
  121        scores = np.sqrt(cls_scores * iou_scores)
 
  122        scores = scores[:, np.newaxis]
 
  134        dets = np.hstack((bboxes, scores))